44 research outputs found

    The MC@NLO 3.2 Event Generator

    Full text link
    This is the user's manual of MC@NLO 3.2. This package is a practical implementation, based upon the HERWIG event generator, of the MC@NLO formalism, which allows one to incorporate NLO QCD matrix elements consistently into a parton shower framework. Processes available in this version include the hadroproduction of single vector and Higgs bosons, vector boson pairs, heavy quark pairs, single top, lepton pairs, and Higgs bosons in association with a W or Z. Spin correlations in decays are included for all processes except ttbar, single-t, ZZ, and WZ production. This document is self-contained, but we emphasise the main differences with respect to previous versions.Comment: 23 pages Late

    Standard Model Higgs boson production in association with a top anti-top pair at NLO with parton showering

    Full text link
    We present predictions for the production cross section of a Standard Model Higgs boson in association with a top-antitop pair at next-to-leading order accuracy using matrix elements obtained from the HELAC-Oneloop package. The NLO prediction was interfaced to the PYTHIA and HERWIG shower Monte Carlo programs with the help of POWHEG-Box, allowing for decays of massive particles, showering and hadronization, thus leading to final results at the hadron level.Comment: 14 pages, 9 figure

    Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics

    Full text link
    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.Comment: 49 pages Latex. Compiled by the Working Group on Quantum ChromoDynamics and the Standard Model for the Workshop ``Physics at TeV Colliders'', Les Houches, France, May 2003. To appear in the proceeding

    Interleaved Parton Showers and Tuning Prospects

    Full text link
    General-purpose Monte Carlo event generators have become important tools in particle physics, allowing the simulation of exclusive hadronic final states. In this article we examine the Pythia 8 generator, in particular focusing on its parton-shower algorithms. Some relevant new additions to the code are introduced, that should allow for a better description of data. We also implement and compare with 2 to 3 real-emission QCD matrix elements, to check how well the shower algorithm fills the phase space away from the soft and collinear regions. A tuning of the generator to Tevatron data is performed for two PDF sets and the impact of first new LHC data is examined

    Hard Interactions of Quarks and Gluons: a Primer for LHC Physics

    Get PDF
    In this review article, we develop the perturbative framework for the calculation of hard scattering processes. We undertake to provide both a reasonably rigorous development of the formalism of hard scattering of quarks and gluons as well as an intuitive understanding of the physics behind the scattering. We emphasize the importance of logarithmic corrections as well as power counting of the strong coupling constant in order to understand the behavior of hard scattering processes. We include "rules of thumb" as well as "official recommendations", and where possible seek to dispel some myths. Experiences that have been gained at the Fermilab Tevatron are recounted and, where appropriate, extrapolated to the LHC.Comment: 118 pages, 107 figures; to be published in Reports on Progress in Physic

    Event shapes in e+e- annihilation and deep inelastic scattering

    Full text link
    This article reviews the status of event-shape studies in e+e- annihilation and DIS. It includes discussions of perturbative calculations, of various approaches to modelling hadronisation and of comparisons to data.Comment: Invited topical review for J.Phys.G; 40 pages; revised version corrects some nomenclatur

    Scaling Patterns for QCD Jets

    Get PDF
    Jet emission at hadron colliders follows simple scaling patterns. Based on perturbative QCD we derive Poisson and staircase scaling for final state as well as initial state radiation. Parton density effects enhance staircase scaling at low multiplicities. We propose experimental tests of our theoretical findings in Z+jets and QCD gap jets production based on minor additions to current LHC analyses.Comment: 36 pages, 16 figure

    Hadronic final states in deep-inelastic scattering with Sherpa

    Full text link
    We extend the multi-purpose Monte-Carlo event generator Sherpa to include processes in deeply inelastic lepton-nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.Comment: 32 pages, 22 figure

    Joint resummation in electroweak boson production

    Full text link
    We present a phenomenological application of the joint resummation formalism to electroweak annihilation processes at measured boson momentum Q_T. This formalism simultaneously resums at next-to-leading logarithmic accuracy large threshold and recoil corrections to partonic scattering. We invert the impact parameter transform using a previously described analytic continuation procedure. This leads to a well-defined, resummed perturbative cross section for all nonzero Q_T, which can be compared to resummation carried out directly in Q_T space. From the structure of the resummed expressions, we also determine the form of nonperturbative corrections to the cross section and implement these into our analysis. We obtain a good description of the transverse momentum distribution of Z bosons produced at the Tevatron collider.Comment: 27 pages, LaTeX, 8 figures as eps files. Some additions to earlier version, this version as published in Phys. Rev. D66 (2002) 01401
    corecore